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Abstract
It is almost universally believed that in quantum theory the two following statements 
hold: (1) all transformations are achieved by a unitary interaction followed by a von-
Neumann measurement; (2) all mixed states are marginals of pure entangled states. 
I name this doctrine the dogma of purification ontology. The source of the dogma is 
the original von Neumann axiomatisation of the theory, which largely relies on the 
Schrődinger equation as a postulate, which holds in a nonrelativistic context, and 
whose operator version holds only in free quantum field theory, but no longer in the 
interacting theory. In the present paper I prove that both ontologies of unitarity and 
state-purity are unfalsifiable, even in principle, and therefore axiomatically spurious. 
I propose instead a minimal four-postulate axiomatisation: (1) associate a Hilbert 
space H

A
 to each system A ; (2) compose two systems by the tensor product rule 

H
AB

= H
A
⊗H

B
 ; (3) associate a transformation from system A to B to a quantum 

operation, i.e. to a completely positive trace-non-increasing map between the trace-
class operators of A and B ; (4) (Born rule) evaluate all joint probabilities through 
that of a special type of quantum operation: the state preparation. I then conclude 
that quantum paradoxes—such as the Schroedinger-cat’s, and, most relevantly, the 
information paradox—are originated only by the dogma of purification ontology, 
and they are no longer paradoxes of the theory in the minimal formulation. For the 
same reason, most interpretations of the theory (e.g. many-world, relational, Dar-
winism, transactional, von Neumann–Wigner, time-symmetric,...) interpret the same 
dogma, not the strict theory stripped of the spurious postulates.
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1 Introduction

We all have become accustomed to a set of rules that we call Quantum Theory (QT), 
which we believe must hold for the whole physical domain at the fundamental level, 
hence also in a theory of gravity. I emphasise the naming Quantum ”Theory”—
instead of Quantum ”Mechanics”—to strip the rules from their mechanical instanti-
ation in particle and matter physics. Such rules (concerning systems, states, observa-
bles, evolutions, and measurements) are now common ground for all physicists. The 
advent of Quantum Information has further stressed such backbone structure of the 
theory, with conceptual focus on composition rules of systems and transformations, 
hence on the underlying graph structure of QT.

In quantum gravity the Hawking radiation from black-hole posed the problem of 
violation of unitarity [1]. This started a debate that is still open. Is it violation of 
unitarity an infringement of a law of QT? As a matter of facts it is almost univer-
sally believed that in QT the two following statements hold: (1) all transformations 
are achieved as a unitary interaction followed by a von-Neumann measurement; (2) 
all mixed states are marginals of pure entangled states. Such dogma of ontology 
of purification originated from the von Neumann axiomatisation of QT [2], which 
largely relies on the Schrődinger equation as a postulate, the latter being valid in a 
nonrelativistic context and in free quantum field theory, but no longer in the interact-
ing theory.1 The dogma of unitarity and purity is so widespread that we associate 
the nomenclature ”quantum theory of open systems” to non-unitary processes and 
mixed states, with a naming that emphasises the alleged incompleteness of the theo-
retical description.

In the present paper I prove that both unitarity and state-purity ontologies are 
not falsifiable [4, 5], and therefore propose an alternative four-postulate axiomati-
sation of QT: (1) associate a Hilbert space HA to each system A ; (2) compose two 
systems by the tensor product rule HAB = HA ⊗HB ; (3) associate a transformation 
from system A to B to a quantum operation, i.e. to a completely positive trace-non-
increasing map from T(HA) to T(HB) ; 4) provide the Born rule in terms of the prob-
ability of state-preparation—a special kind of transformation. I therefore conclude 
that the information paradox is not a paradox. In addition, also quantum paradoxes, 
such as the Schroedinger-cat’s, are not logical paradoxes of the theory anymore, but 
just consequence of the old redundant axiomatisation. For the same reason, interpre-
tations of the theory as the many-world, relational, Darwinism, transactional, von 
Neumann–Wigner, time-symmetric, and similia are interpretations of the dogma, 
not genuine interpretations of the theory strictly speacking.

I will then conclude the paper with a short discussion about the role of unitarity 
and state purity in the theory.

1 Indeed, besides being mathematically not defined, the Feynman path-integral (which in interacting 
field theory plays the role of the unitary evolution) in nonabelian gauge theories needs the introduction of 
Faddeev and Popov ghost field modes [3], that, as their name says, are not experimentable.
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2  The Minimal and the von Neumann Axiomatisations of QT

We assume the reader to be familiar with the natural circuit language in quantum 
information [6].2 In the following we will use the convenient rule of taking the 
trace Tr� of the density matrix � ∈ St(A) of system A as the preparation probability 
p(�) = Tr� of the state �—our Born rule—whereas unit-trace density matrices spe-
cifically describe deterministic states. In such a way, for example, the trace Tr[T�] is 
equal to the joint probability of �-preparation followed by the quantum operation T
–the composition of the two being just a new preparation. This convention makes 
possible to regard states and effects just as special cases of probabilistic transfor-
mations, from and to the trivial system I , respectively, with Hilbert space HI = ℂ . 
Finally, we will make use of the common notation summarised in Table  2 in the 
Appendix.

2.1  Comparing the Two Axiomatisations and Their Main Theorems

In Table 1 we report the customary mathematical axiomatisation of QT, and the min-
imal axiomatisation proposed here. In both cases a system A of the theory is mathe-
matically associated to Hilbert space HA and the composition of systems is provided 
by the Hilbert-space tensor product HAB = HA ⊗HB . It follows that the trivial sys-
tem, defined by the composition rule AI = IA = A has Hilbert space HI = ℂ , which 
is the first theorem of both axiomatisations. The usage of the trivial system is crucial 
for considering both states and effects as special cases of transformations.

The following postulates differ remarkably between the two axiomatisations. The 
minimal axiomatization adds two postulates: the first one describing transformations 
T ∈ Trn(A → B) by completely positive trace-not-increasing maps between trace-
class operator spaces; the second one providing the Born rule in terms of the trace 
of a special kind of transformations corresponding to states. The axiomatisation a la 
von Neumann, instead, adds four independent postulates, describing: (a) pure deter-
ministic states in terms of vectors on the Hilbert space of the system; (b) reversible 
transformations as unitary maps on states; (c) a single irreversible transformation—
the von Neumann-Lüders projection (on eigen-space of the ”observable” corre-
sponding to the measured ”value”); (d) the Born rule, providing the probability of 
the measured value.

3  The Issue of Unitarity: The Black‑Hole Information Paradox

The problem with the von Neumann axiomatisation, is not just a simple matter of 
efficiency, but what is significant is the fact that it implies that all transformations 
are ”actually” achieved through a unitary interaction with additional systems that 

2 The circuit language in quantum information science is mathematically formalised in terms of the 
operational probabilistic theory (OPT) framework (see e.g. Ref. [7]) Indeed, the same framework is used 
in computer science in terms of Category Theory [8, 9].
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Table 1  Customary versus minimal mathematical axiomatisation of quantum theory

Customary mathematical axiomatisation of quantum theory

System A HA

System composition AB HAB = HA ⊗HB

Deterministic pure state � ∈ PurSt1(A) � = ��⟩⟨��,� ∈ HA,||�|| = 1

Reversible transf. U ∈ RevTrn(A) U� = U��⟩⟨��U† , U ∈ �(A)

von Neumann–Lüders transforma-
tion

� → Zi� ∶= Zi�Zi {Zi}i∈X ⊂ Bnd(HA) PVM

Born rule p(i��) = ⟨��Zi��⟩

Theorems

Trivial system I H
I
= ℂ

Deterministic states � ∈ St1(A) ≡ ����(PurSt1(A)) � ∈ T+
=1
(HA)

States � ∈ St(A) ≡ ����
≤1(PurSt1(A)) � ∈ T+

≤1
(HA)

Transformation as unitary interac-
tion + von Neumann observable 
on “meter”

Ti𝜌 = TrE[U(𝜌 ⊗ 𝜎)U†(IB ⊗ Zi)]

Transformation T ∈ Trn(A → B) T ∈ CP
≤
(T(HA) → T(HB))

Parallel composition T1 ∈ Trn(A → B) , 
T2 ∈ Trn(C → D)

T1 ⊗ T2

Sequential composition T1 ∈ Trn(A → B) , 
T2 ∈ Trn(B → C)

T2T1

Effects � ∈ Eff(A) ≡ Trn(A → I) �(⋅) = TrA[⋅E], 0 ≤ E ≤ IA

� ∈ Eff1(A) ≡ Trn1(A → I) � = TrA

Minimal mathematical axiomatisation of quantum theory

System A H
A

System composition AB HAB = HA ⊗HB

transformation T ∈ Trn(A → B) T ∈ CP
≤
(T(HA) → T(HB))

Born rule p(T) = TrT T ∈ Trn(I → A)

Theorems

Trivial system I H
I
= ℂ

Reversible transf. U = U ⋅ U† U ∈ �(HA)

Determ. transformation T ∈ Trn1(A → B) T ∈ CP=(T(HA) → T(HB))

Parallel composition T1 ∈ Trn(A → B) , T2 ∈ Trn(C → D) T1 ⊗ T2

Sequential composition T1 ∈ Trn(A → B) , T2 ∈ Trn(B → C) T2T1

States � ∈ St(A) ≡ Trn(I → A) � ∈ T+
≤1
(HA)

� ∈ St1(A) ≡ Trn1(I → A) � ∈ T+
=1
(HA)

� ∈ St(I) ≡ Trn(I → I) � ∈ [0, 1]

� ∈ St1(I) ≡ Trn(I → I) � = 1

Effects � ∈ Eff(A) ≡ Trn(A → I) �(⋅) = TrA[⋅E], 0 ≤ E ≤ IA

� ∈ Eff1(A) ≡ Trn1(A → I) � = TrA

Transformations as unitary inter-
action+ von Neumann–Lüders

Ti𝜌 = TrE[U(𝜌 ⊗ 𝜎)U†(IB ⊗ Zi)]
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are not under our control, or on which we perform a von Neumann–Lüders meas-
urement. Whereas this can be done for all transformations (and indeed it is a the-
orem of the minimal axiomatisation, as in Table 1), not necessarily it is actually 
the case. What we put into discussion here, is the ontology of the unitary realisa-
tion of quantum transformations.

The fact that each transformation must necessarily be ultimately unitary would 
be of no concern if it made no harm to the whole logical consistency of theories 
in physics. However, this is not the case, due to the information paradox. Lloyd 
and Preskill [10] expressed the impossibility of reconciling unitarity with the fol-
lowing relevant facts (quoting from the same reference [10])

(1) An evaporating black hole scrambles quantum information without 
destroying it. (2) A freely falling observer encounters nothing unusual upon 
crossing the event horizon of a black hole. (3) An observer who stays out-
side a black hole detects no violations of relativistic effective quantum field 
theory.

Then, Lloyd and Preskill say:

This puzzle has spawned many audacious ideas, beginning with Hawking’s 
bold proposal that unitarity fails in quantum gravity. Unitarity can be tempo-
rarily violated during the black hole evaporation process, accommodating vio-
lations of monogamy of entanglement and the no-cloning principle, and allow-
ing assumptions (1), (2), and (3) to be reconciled.

On the other hand, Nikolic writes that ”violation of unitarity by Hawking radia-
tion does not violate energy-momentum conservation” [11], hence it makes no harm 
to physics.

Antonini and Nambiar write [12]

This is the essence of the black hole information paradox (BHIP): unlike any 
other classical or quantum system, black holes may not conserve information, 
thus violating unitarity. Some physicists speculate that quantum gravity may 
actually be non-unitary.

When this phenomenon is analyzed closer, we discover that it takes pure states 
to mixed states, a violation of unitarity, a fundamental property of quantum 
physics.

And Polchinski declared [13]:

Unitarity? Not consistent with AdS/CFT.

In the following sections we will see that unitarity of the realisation of quantum 
transformations is a spurious postulate, since in addition to be inessential, it is also 
not falsifiable. The same holds for the requirement of state purity as the actual reali-
sation of mixed states as marginal of pure entangled ones, as in most interpretations 
of quantum theory, e.g. the many-world. With these motivations we devote the entire 
next section to develop the theory of quantum falsification, and apply it to prove 
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unfalsifiability of purity of quantum states, unitarity of quantum transformations, 
and consequently the unfalsifiability of unitary realisation of transformations and 
pure realisation of mixed states.

4  The Quantum Falsification Test

Definition 1 (Falsifier) The event F is a falsifier of hypothesis Hyp if F cannot hap-
pen for Hyp = ����.

Accordingly we will call the binary test {F,F?} a falsification test for hypothesis 
Hyp , F? denoting the inconclusive event.3 Practically one is interested in effective 
falsification tests {F,F?} which are not singleton—the two singleton tests corre-
sponding to the inconclusive falsification test for F = 0 and the logical falsification 
for F? = 0 , respectively.

Suppose now that one wants to falsify a proposition about the state � ∈ St(A) of 
system A . In such case any effective falsification test can be achieved as a binary 
observation test of the form

where with the symbol F ( F? ) we denote both the event and its corresponding posi-
tive operator. Notice the strict positivity of F for effectiveness of the test, F = 0 cor-
responding to the inconclusive test, namely the test that outputs only the inconclu-
sive outcome. On the other hand, the case F? = 0 corresponds to logical a priori 
falsification.

4.1  Example of Falsification Test

Consider the proposition

where ���� � denotes the support of � . Then, any operator of the form

would have zero expectation for a state � satisfying Hyp in Eq. (2), which means that 
occurrence of F would be a falsification of Hyp, namely

(1){F,F?} ⊂ Eff(A), F? ∶= IA − F, F > 0,F? ≥ 0,

(2)Hyp ∶ ���� 𝜌 = K ⊂ HA, 𝜌 ∈ St(A), dimHA ≥ 2

(3)0 < F ≤ IA, ����F ⊆ K
⟂

(4)Tr[𝜌F] > 0 ⇒ Hyp = 𝖥𝖠𝖫𝖲𝖤.

3 We want to remark that the occurrence of F? generally does not mean that Hyp = ���� , but only that 
the falsification test failed.
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In this example we can see how the falsification test is not dichotomic, namely 
the occurrence of F? does not mean that Hyp = ���� , since F? occurs if 
����F? ∩K ≠ 0 . Eq. (3) provides the most general falsification test of Hyp in Eq. 
(2), and the choice ����F = K

⟂ provides the most efficient test since it maximises 
the falsification chance.

We may have considered more generally falsification tests with N ≥ 1 falsifiers 
and M ≥ 1 inconclusive events. However, any of such a test would correspond to a 
set of binary falsification tests with the falsifier made as coarse-graining of falsifiers 
only, and among such tests the most efficient one being the one which coarse-grains 
all falsifiers into a single falsifier and all inconclusive events into a single inconclu-
sive event. Another relevant observation is that, by modus tollens, if Hyp1 ⇒ Hyp2 a 
falsifier for Hyp2 also falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum 
transformations is actually a spurious postulate, since in addition to be inessential, 
it is also not falsifiable. We devote the entire next section to quantum falsification 
theory and apply it to prove unfalsifiability of purity of quantum states, and unitarity 
of quantum transformations, and consequently the unfalsifiability of unitary realisa-
tion of transformations and pure realisation of mixed states.

5  Unfalsifiabilities in Quantum Theory

We will now prove a set of no-falsification theorems within quantum theory.

5.1  Unfalsifiability of Purity of a Quantum State

Theorem 1 (Unfalsifiability of state purity) There exists no test falsifying purity of 
an unknown state of a given system A.

Proof In order to falsify the hypothesis

we need a falsifier F ∈ Eff(A) satisfying

which means that

namely F = 0 , which means that the test is inconclusive.   ◻

By the same argument one can easily prove the impossibility of falsifying purity 
even when N > 1 copies of the state are available.

(5)Hyp ∶ � ∈ PurSt(A),

(6)Tr[F�] = 0,∀� ∈ PurSt(A),

(7)∀� ∈ HA ∶ ⟨��F��⟩ = 0,
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5.2  Unfalsifiability of Atomicity of a Quantum Transformation

The impossibility of falsifying purity of a state has as an immediate consequence the 
impossibility of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of transformation atomicity) There exists no test falsify-
ing atomicity of an unknown transformation A ∈ Trn(A → B).

Proof The most general scheme for testing a property of a transformation 
T ∈ Trn(A → B) is the following

We can use the maximally entangled state R = �Φ⟩⟨Φ� , thus exploiting the Choi–
Jamiołkowski cone-isomorphism between transformations and bipartite states. One 
has

and falsifying atomicity of T ∈ Trn(A → B) is equivalent to falsifying purity of 
(T⊗ IE)R , which is impossible.  □

5.3  Unfalsifiability of Max‑Entanglement of a Pure Bipartite State

In the following we will use maximally entangled pure bipartite states in HA ⊗HB 
generally with non equal dimensions dA ≥ dB and Schmidt number equal to dB . A 
maximally entangled state of this kind has the general form

where the matrix of coefficients Vnm correspond to the isometry

satisfying V†V = IB . We are now in position to prove the following theorem.

Theorem  3 (Unfalsifiability of max-entanglement of a pure state of systems AB ) 
There exists no test falsifying max-entanglement of a pure bipartite state.

(8)

(9)atomicity of T ≡ purity of state (T⊗ I
E
)R,

(10)�V⟩ =

dA�

n=1

dB�

m=1

Vnm�n⟩⊗ �m⟩,

(11)V =

dA�

n=1

dB�

m=1

Vnm�n⟩⟨m�,

4 A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in 
its Krauss form. Equivalently, its Choi-Jamiolkowsky operator is rank-one.
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Proof W.l.g. we consider the case of dA ≥ dB , as in Eq. (10). Falsification of max-
entanglement of state �V⟩⟨V� needs a falsifier F ∈ Eff(AB) satisfying

In particular, since unitary transformations on either HA or HB preserve max-entan-
glement, one has

It follows that the average over the unitary group GA = SU(dA) must be zero, cor-
responding to5

where the complex conjugation is w.r.t. the chosen basis in Eq. (10). Equation (14) 
implies that F = 0 , which contradicts the falsification effectiveness condition F > 0 . 
 □

5.4  Unfalsifiability of Isometricity a Quantum Transformation

Theorem  4 (Unfalsifiability of isometricity of a transformation from B to A 
with dA ≥ dB ) There exists no test falsifying isometricity of a transformation 
V ∈ Trn(B → A) with dimHA ≥ dimHB.

Proof The application of the operator to a fixed maximally-entangled state puts iso-
metricity transformations in one-to-one correspondence with maximally entangled 
states. Thus, being able to falsify maximal entanglement would allow to falsify iso-
metricity.  □

Corollary 1 (It is not possible to falsify unitarity of a transformation)

Proof Obviously Theorem 4 exclude the possibility to falsify unitarity of a transfor-
mation, since it is a special case of isometricity.  □

(12)Tr[F�V⟩⟨V�] = 0, ∀�V⟩ maximally entangled.

(13)Tr[F(U⊗ IB)�V⟩⟨V�] = 0, ∀U = U ⋅ U†,U ∈ �(HA).

(14)
0 =

∫GA

dUTr[F(U⊗ IB)�V⟩⟨V�] = Tr[F(IA ⊗ TrA[�V⟩⟨V�])]

=Tr[F(IA ⊗ (V†V)∗)] = Tr[F(IA ⊗ IB)] = Tr[F],

5 In Eq. (14) dU is denotes the invariant normalized Haar measure of GA = SU(dA).
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5.5  Unfalsifiability of a Mixed State Being the Marginalization of a Pure One

Any purification of the mixed state � ∈ St(A) can be written in the following dia-
grammatic form

with dB = dA ≤ dE and e denoting the deterministic effect, corresponding to discard-
ing system E , and V being any map isometric on ���� � . We thus resort to the falsifi-
ability of being a pure state of the form (IA ⊗ V)�𝜌1∕2⟩AA.

Theorem  5 (Unfalsifiability of mixed state in St(A) being the marginalisa-
tion of a pure state of AE with dE ≥ dA ) There exists no test falsifying the asser-
tion that a mixed state in St(A) is actually the marginal of a pure state of AE with 
dimHE ≥ dimHA.

Proof Consider the general purification scheme in Eq. (15). Upon denoting by 
V ∈ Trn(A → E) an isometric transformation with dE ≥ dB = dA , a falsifier 
F ∈ Bnd+(AE) should satisfy the following identity

and by unitarily connecting all the possible isometries V with fixed support, one has

It follows that the average over the unitary group GE = SU(dE) must be zero, cor-
responding to

where T denotes the transpose w.r.t. the basis for the representation of the �1∕2 puri-
fication, and FA = TrEF . For � full-rank one has FA = 0 , implying TrF = 0 , namely 
F = 0 , proving the statement. For ��� 𝜌 < dA , FA becomes a falsifier of ���� � , 
which is known a priori.  □

This excludes the possibility of falsifying that a knowingly mixed state of a quantum 
system A is actually the marginal of a pure entangled state with an environment system 
E . Moreover, the system E is unknown (we just know that it must have dimension dAdE , 
with dE ≥ dA).

(15)

(16)Tr[F(IA ⊗ V)�𝜌1∕2⟩⟨𝜌1∕2�] = 0,

(17)Tr[F(IA ⊗ UV)�𝜌1∕2⟩⟨𝜌1∕2�] = 0, ∀U, U = U ⋅ U†, U ∈ �(HE).

(18)

0 =
∫GE

dU Tr[F(IA ⊗ UV)�𝜌1∕2⟩⟨𝜌1∕2�] = Tr[F(TrE[�𝜌
1∕2VT⟩⟨𝜌1∕2VT �]⊗ IE])]

= Tr[F(𝜌 ⊗ IE)] = Tr[FA𝜌],



1931

1 3

Foundations of Physics (2020) 50:1921–1933 

5.6  Unfalsifiability of Unitary Realization of a Transformation

The impossibility of falsifying the unitarity of a transformation (Theorem 3) with input 
and output systems under our control excludes the possibility of falsifying that a trans-
formation is actually achieved unitarily, according to the scheme

with {Zi} von Neuman–Lüders measurement over the output environment E , and the 
input environment F prepared in a state � . Systems E, F , state � , measurement Zi , 
and unitary U are all not unique and unknown, otherwise the testing resorts to fal-
sifying unitarity of U , which is impossible, not even with control of input-output 
systems AF and BE.

6  Conclusions

Some authors argue that unobservable physics (e.  g. cosmological models invoking a 
multiverse) is legitimate scientific theory, based on abduction and empirical success 
[14]. However, I think that we should keep cosmology as an exception. Quantum Theory 
should be taken at a completely different level of consideration. It is a mature theory, it is 
under lab control, and, by its own nature, it categorises the same rules for experiments. 
For such a theory, falsifiability, at least in principle, is a necessary requirement. The case 
of unitarity and the information paradox is paradigmatic in this respect, and one may 
legitimately ask what is the point in keeping within the theory an inessential metaphysi-
cal statement, without which the theory perfectly stands on its own legs. Somebody may 
argue that unitarity is dictated by a more refined theory, e. g. quantum field theory. How-
ever, although this is the case for the free theory, it no longer survives the interacting one.6

If not falsifiable and inessential, why then unitarity is so relevant to the theory? 
Why vectors in Hilbert spaces are ubiquitous? The answer is that unitarity and 
purity are powerful symmetries of the theory, and, as such, they play a crucial role 
in theoretical evaluations.

Finally, we have said that most interpretations of the theory (many-world, rela-
tional, Darwinism, transactional, von Neumann–Wigner, time-symmetric,...) are 
indeed interpretations of the unitarity-purity dogma, and not genuine interpretations 
of the theory strictly speaking. Such interpretations, however, still play a role as 
models, helping our conceptual understanding and intuition. However, they should 
not be taken too seriously. This is the main lesson of Copenhagen.

Acknowledgements I thank Alessandro Tosini for interesting discussions and a careful reading of the 
manuscript, and Mio Murao for interesting suggestions.
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6 The unitary operator would correspond to the Feynman path integral, which is mathematically not 
defined, and, even as such it needs ghost fields to fix the gauge [3].
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Appendix

Notation

Table 2  Notation and corollary special cases

H Hilbert space over ℂ
Bnd+(H) bounded positive operators over H
�(H) unitary group over H
T(H) trace-class operators over H
T+(H) trace-class positive operators over H
T+
≤1
(H) positive sub-unit-trace operators over H

T+
=1
(H) positive unit-trace operators over H

CP
≤

trace-non increasing completely positive map
CP= trace-preserving completely positive map
����(�) convex hull of �
����(�) conic hull of �
����

≤1(�) convex hull of {� ∪ 0}

St(A) set of states of system A
St1(A) set of deterministic states of system A
Eff(A) set of effects of system A
Eff1(A) set of deterministic effects of system A
Trn(A → B) set of transformations from system A to system B
Trn1(A → B) set of deterministic transformations from system A to system B

Special cases
T(ℂ) = ℂ , T+(ℂ) = ℝ

+ , T+
≤1
(ℂ) = [0, 1] , T+

=1
(ℂ) = {1}

CP(T(H) → T(ℂ)) = P(T(H) → T(ℂ)) = {Tr[⋅E], E ∈ Bnd+(H)}

CP(T(ℂ) → T(H)) = P(T(ℂ) → T(H)) = T+(H)

CP
≤
(T(ℂ) → T(H)) ≡ T+

≤1
(H)

CP
≤
(T(H) → T(ℂ)) ≡ {�(⋅) = Tr[⋅E], 0 ≤ E ≤ I}
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